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1. 1. Let a rectilinear crack in an infinite flat plate by supported in 
an open state by breaking loads, symmetrical relative to 
along which the crack lies and relative to the center of 
was shown earlier [ 1 1 the half-length of such a crack I 
the relationship* 

1 

s 
I’ (2) dx K 

v/122 = ---or 

a straight line 
the crack. As 
is determined by 

(1.1) 

where K is the modulus of cohesion [ 1,2 1 , the coordinate x is the dis- 
tance along the crack from the center, p(x) is the distribution of the 
normal stresses appearing along the x-axis in the continuous plate with- 
out a crack under the action of the same stresses. ‘lhe function p(x) is 
easily found for the given loads and can therefore be considered known. 

Let us assume that the acting loads are proportional to a certain 
parameter h; it is evident that p(x) will also be proportional to h, so 
that p(x) = Af(x). 

* Note that the whole consideration in reference 111 was carried out 
for the case of plane deformation (thick plate). For the conversion of 
results to the case of the generalized plane state of stress (thin 

plate), it is sufficient to substitute E/(1 - V) for E and K for A1 = 
KY 1 - v2. In particular, the formula for the length of the crack in 
the problem on the cracking of the plate in the case of the general- 
ized plane stress takes the form L = E2h2/4K2. 
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Converting to the dimensionless variable 5 = n/l, we reduce equation 
(1.1) to the form 

(1.2) 

Further, the radius R of a circular crack in an infinite body, sup- 
ported in an open state by an axially-syarnetric breaking load, which is 
also symnetric relative to the plane of the crack, is determined by the 
relationship I: 2 I D 

I7 

s ‘P (F) dr 
o v/R-= (1.3) 

where p(r) is the distribution of normal stresses in the plane of sym- 
metry of the load for the continuous body without a crack under the action 
of the same load. If again the acting load is proportional to the para- 
meter A, then the function p(r) is also proportional to the parameter A, 
so that p(r) = X f(r) and equation (1.3) is reduced to the form 

(1.4) 

Iherefore, in all cases the relationship determining the crack dimen- 
sion has the form: 

(D(c) = K/@h (1.5) 

where under c one must understand the half-length of a rectilinear crack 
1 or the radius of a circular crack R, and the function O(c) for the 
rectilinear and ciruclar cracks is determined, respectively, by the equa- 
tions 

(I.61 

2. ‘lhe study of the dependence of the 
leads to the study of the functions CD(c) 
(1.6). 

crack dimension upon the load 
determined by the equations 

Let us exclude from consideration the case when the crack is formed 

by concentrated forces applied on its surface; these cases are considered 
in sufficient detail in references [ 1,2 1 . Let the crack, therefore, be 
maintained in an open state by some forces, in particular it may be by 

concentrated forces applied inside the body, and by distributed loads 
applied at the surface of the crack. MOreover, the function p and con- 
sequently also the function f will be limited. 
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At small values of c, we obtain respectively in the first and the 
second cases from equations (1.6) 

so that at small c the functions @(cl grow proportionally to dc. If the 
breaking forces applied to the body from each side of the crack are 
limited and for definiteness are equal to XP, then the following relation- 
ship holds 

(1.8) 

Hence from (1.6) we also obtain respectively in the first and second 
cases as c + 00 

@ (cl - -& 9 w-y& (1.9) 

so that in both cases the functions Q(c) at infinity decrease, converging 
to zero, and have at least one positive finite maximun. We assume that 
the largest of the maxima is reached at some point c = co (c, known to be 
positive), at which the value of the function @(cl is equal to (DO. ‘l&n 
at X < X, 0 K/d/2 (PO equation (1.5) does not have a solution; this means 
that at too small loads an equilibrium crack generally does not form. At 
A = A, there is one root c P cO of this equation. Physically this means 
that at reaching a certain critical load a crack of a definite finite 
dimension is now formed imnediately and abruptly. 

For h > X,, equation (1.5) has several roots. Which of these roots 
really correspond to the actual crack is determined by a consideration 
of stability. 

In the case when the applied forces, acting on the body from both 
sides of the crack, are not limited, the function Q(c) cannot have de- 
creasing portions. It will be thus, in particular, in the case of a homo- 
geneous field when @(cl is proportional to d/c. 

2. Ihe equilibrium state of a crack according to definition is stable 
if any sufficiently small change in dimension of crack leads the appear- 
ances of forces striving to return the system to the state of equilibrium 
that has been disturbed. We shall investigate the condition of stability 
for cases of a rectilinear crack in an infinite flat plate and a circular 
crack in an infinite body for arbitrary symnetrical breaking loads. 
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Let the loads again be proportional to some parameter A, so that an 

increase in the parameter h corresponds to an increase in load. 

For the stability of a crack it is necessary that the equilibrium 

dimension of the crack grow with an increase of the parameter A. Actual- 

ly, we assume that with an increase of load the corresponding equilibrium 

dimension c increases. Let the dimension of the crack be slightly decreased 

in comparison with the equilibrium dimension at the same load. Moreover, 

the total force connecting both halves of the body together is decreased, 

the equilibrium with the applied, somewhat larger, loads is disturbed and 

the crack will tend to spread. If the crack dimension is somewhat in- 

creased in comparison with the equilibrium dimension, then the equilibrium 

is disturbed in the reverse direction and the crack will tend to close 

up. If the equilibrium dimension of the crack is decreased with an in- 

crease in load, when the situation is close to a given equilibrium state, 

then, evidently, at a small change in crack dimension the forces produced 

will aggravate the deviation from equilibrium condition and the crack will 

abruptly or catastrophically spread so that the corresponding equilibrium 

state will be unstable. 

Thus, the equilibrium state, corresponding to some dimension of crack 

c and to the corresponding value of the parameter A, is stable if for the 

given c and X the following condition is fulfilled 

$>O 

Differentiating equation (1.51, we obtain 

(2.1) 

(2.2) 

Hence from the inequality (2.1) we also obtain the condition of crack 

stability in the form 

W(c) < 0 (2.3) 

Therefore, only those equilibrium states are stable which correspond 

to the decreasing portion of the curve Q(c). Hence, in particular, it 

follows that if the crack is maintained in an open state by forces applied 

inside the body, and propagated by loads applied on the surface of the 

crack, and if the forces applied from each side of the crack are limited, 
then at loads greater than the critical there is at least one stable and 

one unstable equilibrium state. In case of a homogeneous field all equi- 
librium states are unstable because in this case the function @D(c) is 
proportional to d/c and its derivative is positive for all values 

of c. 

lhe critical equilibrium states, separating the stable from the un- 
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stable states are determined by the relationship (1.5) and also by the 
requirement of the maxima and minima of the function Q,(c) for these 
states. 

In the transition through the critical equilibrium states, the crack 
dimensions change abruptly, - the point representing the equilibrium 
state passes from one stable part of the curve Q(c) to another. ‘lhere- 
fore, the graph of the function a,(c) makes possible a complete represent- 
ation of the picture of crack development with increasing load. Generally 
speaking, the number of extrema of the function @(c) may be arbitrarily 
large; therefore, this picture may appear quite complex. If the crack is 
reversible, then using the graph of the function @(cl, one may also study 
the picture of the change in crack dimensions for a decrease and any non- 
monotonic change: in load. Moreover, it is evident that the abrupt change 

in the crack dimensions will occur, generally speaking, not for a mono- 
tonic increase in load, but rather in other cases. The resulting condi- 
tions of stability make it possible also to judge the crack stability in 
finite bodies, because the effect of boundaries can replace the action of 
corresponding forces in an infinite body. 

3. In almost all investigations without exception which have shed 
light on the formation and development of cracks, beginning with the 
classic work of Griffith [3 1, the energetic approach was used, the 
idea of which is essentially the following. Let W be the decrease in 
elastic energy of the body due to the formation of the crack, and U the 
surface energy of the crack; at a given crack configuration the values 
of H' and U will depend only on the crack dimension c. For the equilibrium 
state the maximum and minimum condition of free energy must be fulfilled 

-$w-_I;‘) =o (3.1) 

which also determines the relationship of load and crack dimension, 

Ulder the assqtion that the supplementary stresses caused by the 
cohesion forces add an essential contribution to the increase of elastic 
energy because of the crack formation and that the density of the surface 
energy is constant, the result is that W does not depend upon the cohesion 
force and is determined by the solution of a problem in elasticity theory 
for a given load and crack configuration, and U= 2TS, where S is the 
area of the crack in a plane. Considering the rupture to be ideally 
brittle, Griffith [3 1 identified the density of the surface energy T 

with the surface tension of the material. Growan [4 1 and Irwin [5 1 ex- 
tended Griffith's conception to incompletely brittle materials, consider- 
ing 2T to be the specific work of plastic deformations in a thin layer 
close to the crack surface. 

The energetic approach to the solution of the problems in the develop- 
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ment of cracks is essentially more complex than the proposed force 

approach, because of the necessity of using the elastic energy. This, in 

particular, is evident from the fact that hitherto in fact the de- 

termination of the crack dimensions by the energetic method has been 

done only for the trivial and, moreover, unstable case of a homogeneous 

field. 

We shall show that the force approach does not contradict the energetic 

approach. Indeed, from the smallness of the terminal region (first hypo- 

thesis [ 2 I ) and final stress in this region (third hypothesis) follows 

a small contribution to the elastic energy, introduced by the presence 

of cohesion forces. From the autonomous final region of the crack (second 

hypothesis) follows the constancy of the work T, done against the cohesion 

forces in the creation of a unit surface of crack, so that the work spent 

on surmounting the cohesion forces during the creation of a crack with an 

area in the plane S, - and this also is the surface energy of the crack 

in conformity with its definition, - is equal to 2TS. 

‘Iherefore, for the establishment of the relationship of the modulus of 

cohesion K with the density of the surface energy T one must, evidently, 

compare the relationships determining the crack dimensions obtained by 

the energetic and the force methods for any problem, for example, for the 

problem concerning the ciruclar crack in an infinite body maintained by 

an arbitrary axially-symnetric rupturing load which is syarnetric with 

respect to the plane of the crack. 

We shall represent the state of stress in a body with a crack in the 

form of the sum of two states of stress: the state of stress in a con- 

tinuous body with a given load and the state of stress in the body with 

a crack on the surface of which normal stresses p(r) are applied. 

What is interesting is not the increase itself of the elastic energy 

of the total state of stress, but the derivative of this increase with 

respect to the dimension, in the given case with respect to the crack 

radius (rate of release of the elastic energy); therefore the calculation 

of the increase of elastic energy of the total state of stress can re- 

place the calculation of the increase of elastic energy of any state of 

stress differing from the total in magnitude not dependent upon the crack 

radius. The first state of stress, obviously does not depend on the crack 

radius, hence one may take as such a state of stress the second stress 

state. In general form this convenient method was first proposed by 

Bueckner [ 6 1 . 

Let us calculate the elastic energy of the second state of stress. If 

on the surface of the crack of radius R normal stresses - cp(r) are 

applied, then as shown by Sneddon [ 7 1 , the normal displacements of points 

of the crack surface are equal to 
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W=- 

1 
. 

f 
P 

and the changes in the normal displacements, corresponding to the increase 
in load up to - (c c & )pfr), are equal to 

It is easy to see that the decrease in elastic energy caused by the 
formation of the crack is equal to 

Changing the order of integration, we find 

Setting p = ~6% we have 
L* 

I\ 
P (PR)& 

0 Vi*“-- 
_ppp!!!! = pF @I?) 

0 

whence we alsa obtained from (3.4) 

W=s(l-qH3 * 
E s 

$F2 f $I) d{l 
I, 

(3.5) 

Differentiating (3.5) and then integrating by parts, we have 

Further we have 

U = 2&T, dU /dR = 4rRT 

(3.6j 

(3 -if 

whence also from the equilibrium conditions 
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we obtain 

or 

Finally we find, passing to the variable r = CR : 

Since this relationship must coincide with the equation (1.31, the 

modulus of cohesion K must be related to the density of surface energy T, 
Young’s modulus E and Poisson’s ratio u by the equation 

(3.10) 

Since this relationship relates the universal characteristics of a 

medium, it also must be universal. 

4. Completely analogously, though technically somewhat more complicated 

one may obtain by the energetic method equation fl.l), determining the 

dimension of an isolated rectilinear crack in the case of plane deform- 

ation for an arbitrary distribution of rupturing stresses. 

The equation for the change of the elastic energy is obtained 
case in the form 

in this 

0 0 

where x = 1 cos 8, and the dotted line indicates terms not dependent on 
the crack dimension. Differentiating with respect to 1 and integrating by 

parts thereafter, we obtain an equation for the rate of release of elastic 

energy 

6x7 8 -=; 
ar 

(56 1~~~~~~~~~ (4.2) 

Whence, using the equation of the surface energy U =: 4 T L and equi- 
librium conditions f3.11, we obtain the equation 
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I 

s PO 
o 1/122 

(4.3) 

which coincides with equation (1.1) if the cohesion modulus X is related 

to the density of surface energy and elastic characteristics of the 

material by the expression (3.101, The problem of determining the crack 

dimensions in an arbitrary field of rupturing stresses has been considered 

repeatedly; an attempt to solve it was proposed not long ago by Masubuchi 

18 1. Using the expansion of stresses and displacements of the points of 
the crack surface in a trigonometric series, Masubuchi obtained an equa- 

tion for the rate of release of the elastic energy also in the form of a 

series whose terms were expressed by a coefficient of the mentioned 

trigonometric series. The inadequate effectiveness of the approach did 

not permit Masubuchi to obtain a simple resulting equation (1.1). 

Therefore, we come to the following conclusion. Ihe clarification of 

the physical picture close to the ends of a crack (1.2) permits one to 

consider the problem concerning equilibrium cracks as a problem in 

elasticity theory, adding to the characteristic properties of a material 

a new characteristic, the cohesion modulus K. Such a force approach does 

not contradict the energetic approach developed in the preceding work 

[3-5 I ; however, being essentially more effective, the force approach 
makes the energetic approach unsuitable. 

One must note that repeating the energetic derivations of the equations 

given above, which relate the load with the crack dimensions, one can 

obtain corresponding conditions regarding the finiteness of the stress 

[ 1,2 1 from the maxim and minims condition of the total elastic energy. 

The total elastic energy is governed by the loads and the cohesion forces, 

considering the cohesion forces acting in the end region; moreover, the 

cohesion forces are assumed to be surface forces and normal to the crack 

surface. On the other hand, from the condition of the finiteness of the 

stress at the edges of the crack one can obtain the maximum and minimum 

condition of the total elastic energy. This shows the equivalence of the 

force and energetic approaches. 

'ihe solution of concrete problems uncovers various possibilities of 

experimental determination of the cohesion modulus-K; on the strength of 

equation (3.10) each such determination also gives the density of surface 

energy T. We notice that such a determination of surface energy density 

will be based on the rigorous solution of a problem in elasticity theory. 

At the present time there exists a single method of determination of sur- 

face energy proposed by Obreimow [9 1 and based on the approximate solu- 

tion of the problem by the methods of strength of materials. 

In conclusion the author takes the opportunity to express his sincere 
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the work and its discussion. 
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